3.2.38 \(\int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx\) [138]

3.2.38.1 Optimal result
3.2.38.2 Mathematica [C] (verified)
3.2.38.3 Rubi [A] (verified)
3.2.38.4 Maple [A] (verified)
3.2.38.5 Fricas [B] (verification not implemented)
3.2.38.6 Sympy [F(-2)]
3.2.38.7 Maxima [F(-2)]
3.2.38.8 Giac [A] (verification not implemented)
3.2.38.9 Mupad [B] (verification not implemented)

3.2.38.1 Optimal result

Integrand size = 36, antiderivative size = 267 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=\frac {((5+3 i) A-(3-i) B) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{4 \sqrt {2} a d}+\frac {((-5-3 i) A+(3-i) B) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{4 \sqrt {2} a d}-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) ((4+i) A+(1+2 i) B) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{\sqrt {2} a d}+\frac {((5-3 i) A+(3+i) B) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{8 \sqrt {2} a d}-\frac {5 A+i B}{2 a d \sqrt {\tan (c+d x)}}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))} \]

output
-1/8*((5+3*I)*A+(-3+I)*B)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/a/d*2^(1/2)+ 
1/8*((-5-3*I)*A+(3-I)*B)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/a/d*2^(1/2)+(- 
1/16+1/16*I)*((4+I)*A+(1+2*I)*B)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)) 
/a/d*2^(1/2)+1/16*((5-3*I)*A+(3+I)*B)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d* 
x+c))/a/d*2^(1/2)+1/2*(-5*A-I*B)/a/d/tan(d*x+c)^(1/2)+1/2*(A+I*B)/d/tan(d* 
x+c)^(1/2)/(a+I*a*tan(d*x+c))
 
3.2.38.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.38 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.43 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=\frac {-i A+B-2 (2 A+i B) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},-i \tan (c+d x)\right ) (-i+\tan (c+d x))-(A-i B) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},i \tan (c+d x)\right ) (-i+\tan (c+d x))}{2 a d \sqrt {\tan (c+d x)} (-i+\tan (c+d x))} \]

input
Integrate[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])) 
,x]
 
output
((-I)*A + B - 2*(2*A + I*B)*Hypergeometric2F1[-1/2, 1, 1/2, (-I)*Tan[c + d 
*x]]*(-I + Tan[c + d*x]) - (A - I*B)*Hypergeometric2F1[-1/2, 1, 1/2, I*Tan 
[c + d*x]]*(-I + Tan[c + d*x]))/(2*a*d*Sqrt[Tan[c + d*x]]*(-I + Tan[c + d* 
x]))
 
3.2.38.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.89, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.472, Rules used = {3042, 4079, 27, 3042, 4012, 25, 3042, 4017, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{3/2} (a+i a \tan (c+d x))}dx\)

\(\Big \downarrow \) 4079

\(\displaystyle \frac {\int \frac {a (5 A+i B)-3 a (i A-B) \tan (c+d x)}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (5 A+i B)-3 a (i A-B) \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)}dx}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A+i B)-3 a (i A-B) \tan (c+d x)}{\tan (c+d x)^{3/2}}dx}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\int -\frac {3 a (i A-B)+a (5 A+i B) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\int \frac {3 a (i A-B)+a (5 A+i B) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\int \frac {3 a (i A-B)+a (5 A+i B) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {-\frac {2 \int \frac {a (3 (i A-B)+(5 A+i B) \tan (c+d x))}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {2 a \int \frac {3 (i A-B)+(5 A+i B) \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {2 a \left (\frac {1}{2} ((5+3 i) A-(3-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\left (\frac {1}{2}-\frac {i}{2}\right ) ((4+i) A+(1+2 i) B) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a (5 A+i B)}{d \sqrt {\tan (c+d x)}}}{4 a^2}+\frac {A+i B}{2 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))}\)

input
Int[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])),x]
 
output
((-2*a*((((5 + 3*I)*A - (3 - I)*B)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x] 
]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]))/2 - (1/2 - 
I/2)*((4 + I)*A + (1 + 2*I)*B)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + 
Tan[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] 
/(2*Sqrt[2]))))/d - (2*a*(5*A + I*B))/(d*Sqrt[Tan[c + d*x]]))/(4*a^2) + (A 
 + I*B)/(2*d*Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x]))
 

3.2.38.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 
3.2.38.4 Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.52

method result size
derivativedivides \(\frac {\frac {i \left (i A -B \right ) \left (\sqrt {\tan }\left (d x +c \right )\right )}{2 \tan \left (d x +c \right )-2 i}-\frac {2 \left (i B +2 A \right ) \arctan \left (\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {2}-i \sqrt {2}}\right )}{\sqrt {2}-i \sqrt {2}}-\frac {2 A}{\sqrt {\tan \left (d x +c \right )}}+\frac {4 \left (-\frac {A}{4}+\frac {i B}{4}\right ) \arctan \left (\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {2}+i \sqrt {2}}\right )}{\sqrt {2}+i \sqrt {2}}}{d a}\) \(140\)
default \(\frac {\frac {i \left (i A -B \right ) \left (\sqrt {\tan }\left (d x +c \right )\right )}{2 \tan \left (d x +c \right )-2 i}-\frac {2 \left (i B +2 A \right ) \arctan \left (\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {2}-i \sqrt {2}}\right )}{\sqrt {2}-i \sqrt {2}}-\frac {2 A}{\sqrt {\tan \left (d x +c \right )}}+\frac {4 \left (-\frac {A}{4}+\frac {i B}{4}\right ) \arctan \left (\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {2}+i \sqrt {2}}\right )}{\sqrt {2}+i \sqrt {2}}}{d a}\) \(140\)

input
int((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c)),x,method=_RETURNV 
ERBOSE)
 
output
1/d/a*(1/2*I*(I*A-B)*tan(d*x+c)^(1/2)/(tan(d*x+c)-I)-2*(2*A+I*B)/(2^(1/2)- 
I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)-I*2^(1/2)))-2*A/tan(d*x+c)^( 
1/2)+4*(-1/4*A+1/4*I*B)/(2^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^( 
1/2)+I*2^(1/2))))
 
3.2.38.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 703 vs. \(2 (200) = 400\).

Time = 0.27 (sec) , antiderivative size = 703, normalized size of antiderivative = 2.63 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=\frac {{\left (a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} \log \left (\frac {2 \, {\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} + {\left (A - i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) - {\left (a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} \log \left (-\frac {2 \, {\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} - {\left (A - i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) + 2 \, {\left (a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt {\frac {-4 i \, A^{2} + 4 \, A B + i \, B^{2}}{a^{2} d^{2}}} \log \left (\frac {{\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-4 i \, A^{2} + 4 \, A B + i \, B^{2}}{a^{2} d^{2}}} + 2 \, A + i \, B\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a d}\right ) - 2 \, {\left (a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt {\frac {-4 i \, A^{2} + 4 \, A B + i \, B^{2}}{a^{2} d^{2}}} \log \left (-\frac {{\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-4 i \, A^{2} + 4 \, A B + i \, B^{2}}{a^{2} d^{2}}} - 2 \, A - i \, B\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a d}\right ) + 2 \, {\left ({\left (-9 i \, A + B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - 8 i \, A e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A - B\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{8 \, {\left (a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )}} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="fricas")
 
output
1/8*((a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt((I*A^2 + 2*A 
*B - I*B^2)/(a^2*d^2))*log(2*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I*e^( 
2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*A^2 + 2*A*B - I*B 
^2)/(a^2*d^2)) + (A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A 
+ B)) - (a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt((I*A^2 + 
2*A*B - I*B^2)/(a^2*d^2))*log(-2*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I 
*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*A^2 + 2*A*B - 
 I*B^2)/(a^2*d^2)) - (A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/( 
I*A + B)) + 2*(a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt((-4 
*I*A^2 + 4*A*B + I*B^2)/(a^2*d^2))*log(((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sq 
rt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-4*I*A^2 
+ 4*A*B + I*B^2)/(a^2*d^2)) + 2*A + I*B)*e^(-2*I*d*x - 2*I*c)/(a*d)) - 2*( 
a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt((-4*I*A^2 + 4*A*B 
+ I*B^2)/(a^2*d^2))*log(-((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt((-I*e^(2*I* 
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-4*I*A^2 + 4*A*B + I*B^ 
2)/(a^2*d^2)) - 2*A - I*B)*e^(-2*I*d*x - 2*I*c)/(a*d)) + 2*((-9*I*A + B)*e 
^(4*I*d*x + 4*I*c) - 8*I*A*e^(2*I*d*x + 2*I*c) + I*A - B)*sqrt((-I*e^(2*I* 
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(a*d*e^(4*I*d*x + 4*I*c) - a 
*d*e^(2*I*d*x + 2*I*c))
 
3.2.38.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=\text {Exception raised: TypeError} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)**(3/2)/(a+I*a*tan(d*x+c)),x)
 
output
Exception raised: TypeError >> Invalid comparison of non-real -I
 
3.2.38.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="maxima")
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.2.38.8 Giac [A] (verification not implemented)

Time = 0.77 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.42 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=-\frac {\left (i + 1\right ) \, \sqrt {2} {\left (2 \, A + i \, B\right )} \arctan \left (\left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right )}{2 \, a d} + \frac {\left (i - 1\right ) \, \sqrt {2} {\left (A - i \, B\right )} \arctan \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right )}{4 \, a d} + \frac {-5 i \, A \tan \left (d x + c\right ) + B \tan \left (d x + c\right ) - 4 \, A}{2 \, {\left (i \, \tan \left (d x + c\right )^{\frac {3}{2}} + \sqrt {\tan \left (d x + c\right )}\right )} a d} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="giac")
 
output
-(1/2*I + 1/2)*sqrt(2)*(2*A + I*B)*arctan((1/2*I + 1/2)*sqrt(2)*sqrt(tan(d 
*x + c)))/(a*d) + (1/4*I - 1/4)*sqrt(2)*(A - I*B)*arctan(-(1/2*I - 1/2)*sq 
rt(2)*sqrt(tan(d*x + c)))/(a*d) + 1/2*(-5*I*A*tan(d*x + c) + B*tan(d*x + c 
) - 4*A)/((I*tan(d*x + c)^(3/2) + sqrt(tan(d*x + c)))*a*d)
 
3.2.38.9 Mupad [B] (verification not implemented)

Time = 9.16 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.00 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))} \, dx=2\,\mathrm {atanh}\left (\frac {a\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-\frac {A^2\,1{}\mathrm {i}}{a^2\,d^2}}}{A}\right )\,\sqrt {-\frac {A^2\,1{}\mathrm {i}}{a^2\,d^2}}+2\,\mathrm {atanh}\left (\frac {4\,a\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {A^2\,1{}\mathrm {i}}{16\,a^2\,d^2}}}{A}\right )\,\sqrt {\frac {A^2\,1{}\mathrm {i}}{16\,a^2\,d^2}}-\mathrm {atan}\left (\frac {2\,a\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {B^2\,1{}\mathrm {i}}{4\,a^2\,d^2}}}{B}\right )\,\sqrt {\frac {B^2\,1{}\mathrm {i}}{4\,a^2\,d^2}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {4\,a\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-\frac {B^2\,1{}\mathrm {i}}{16\,a^2\,d^2}}}{B}\right )\,\sqrt {-\frac {B^2\,1{}\mathrm {i}}{16\,a^2\,d^2}}\,2{}\mathrm {i}-\frac {\frac {2\,A}{a\,d}+\frac {A\,\mathrm {tan}\left (c+d\,x\right )\,5{}\mathrm {i}}{2\,a\,d}}{\sqrt {\mathrm {tan}\left (c+d\,x\right )}+{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,1{}\mathrm {i}}+\frac {B\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{2\,a\,d\,\left (1+\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )} \]

input
int((A + B*tan(c + d*x))/(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)),x)
 
output
2*atanh((a*d*tan(c + d*x)^(1/2)*(-(A^2*1i)/(a^2*d^2))^(1/2))/A)*(-(A^2*1i) 
/(a^2*d^2))^(1/2) + 2*atanh((4*a*d*tan(c + d*x)^(1/2)*((A^2*1i)/(16*a^2*d^ 
2))^(1/2))/A)*((A^2*1i)/(16*a^2*d^2))^(1/2) - atan((2*a*d*tan(c + d*x)^(1/ 
2)*((B^2*1i)/(4*a^2*d^2))^(1/2))/B)*((B^2*1i)/(4*a^2*d^2))^(1/2)*2i + atan 
((4*a*d*tan(c + d*x)^(1/2)*(-(B^2*1i)/(16*a^2*d^2))^(1/2))/B)*(-(B^2*1i)/( 
16*a^2*d^2))^(1/2)*2i - ((2*A)/(a*d) + (A*tan(c + d*x)*5i)/(2*a*d))/(tan(c 
 + d*x)^(1/2) + tan(c + d*x)^(3/2)*1i) + (B*tan(c + d*x)^(1/2))/(2*a*d*(ta 
n(c + d*x)*1i + 1))